Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Food Chem ; 413: 135608, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36745948

ABSTRACT

Due to increasing industrialization and overpopulation, the amount of toxic metals is increasing in the environment, including air, soil, water, and food. Solid phase extraction is an efficient and ideal technique to preconcentrate the toxic metals before their measurements by analytical instruments. Russula brevipes was immobilized on γ-Fe2O3 magnetic nanoparticles and employed as a SPE sorbent to preconcentrate the trace level of Pb(II), Mn(II), and Co(II). To investigate the extraction conditions, significant experimental parameters were examined in details. LODs were calculated as 0.022, 0.015, and 0.024 ng mL-1 for Pb(II), Mn(II), and Co(II), respectively. The biosorption capacities of R. brevipes immobilized γ-Fe2O3 were calculated as 43.1 mg g-1 for Pb(II), 54.9 mg g-1 for Mn(II), and 49.7 mg g-1 for Co(II). Pb(II), Mn(II), and Co(II) in food samples at trace levels were preconcentrated by applying the developed method.


Subject(s)
Lead , Nanoparticles , Water
2.
Chemosphere ; 317: 137840, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640976

ABSTRACT

An alternative biotechnological solid phase bio-extraction (SPE) method was developed. Bacillus subtilis loaded multiwalled carbon nanotube was designed and used as biosorbent for the preconcentrations of Pb(II), Ni(II), and Zn(II). The experimental parameters such as sample flow rate, pH of sample solution, amounts of Bacillus subtilis and multiwalled carbon nanotube, volume of sample solution and reusability of column which affects the analytical characteristics of the SPE method were investigated in details. Surface structures were examined by using FTIR, SEM. The best pH was determined as 5.0 and the percentages recoveries of Zn(II), Ni(II), and Pb(II) were determined as 99.1%, 98.7%, and 96.2%, respectively, at a flow rate of 3 mL/min. In this study, in which the profitable sample volume was determined as 400 mL and the amount of multiwalled carbon nanotube (MWCNT) as 50 mg. It was also observed that the column had a significant potential to preconcentrate Zn(II), Ni(II), and Pb(II) even after 25 reuses. The biosorption capacities for Zn(II), Ni(II) and Pb(II) were calculated as 39.67 mg/g, 45.98 mg/g and 51.34 mg/g respectively. The LOD values were calculated as 0.024 ng/mL for Pb(II), 0.029 ng/mL for Ni(II), and 0.019 ng/mL for Zn(II). The linear range was detected as 0.25-25 ng/mL. The concentrations of Pb(II), Ni(II), and Zn(II) in a variety of real food samples were determined by using developed method after application of certified reference sample.


Subject(s)
Bacillus subtilis , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Lead , Solid Phase Extraction/methods , Hydrogen-Ion Concentration , Zinc
3.
Chemosphere ; 311(Pt 1): 136986, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36330980

ABSTRACT

In this study, bioaccumulation, remediation, tolerance, and effects of manganese ions (Mn(II)) and copper ions (Cu(II)) on antioxidant enzymes of thermophilic Bacillus cereus (B. cereus) SO-16 were investigated in detail. The findings of the study showed that Mn(II) was less toxic than Cu(II) to B. cereus SO-16. Moreover, B. cereus SO-16 was exhibited less tolerance to Mn(II) and Cu(II) ions in the liquid medium compared to the solid medium. The growth of bacteria was expressively effective for Mn(II) and Cu(II) concentrations of 2.5 mg/L at 24th h. The highest Mn(II) and Cu(II) bioaccumulation values after 48 h incubation of thermophilic B. cereus SO-16 were measured as 102.04 (24th h) and 87.96 (36th h) metal/dry bacteria weight. The change in morphology and functionality of B. cereus SO-16 after interaction with Mn(II) and Cu(II) was tested using various methods. The results indicated that B. cereus SO-16, a thermophilic bacterium, can be utilized in industrial wastewaters to recover and remediation of toxic metals.


Subject(s)
Bacillus cereus , Metals, Heavy , Wastewater , Metals, Heavy/toxicity , Metals, Heavy/analysis , Manganese , Bioaccumulation
4.
Food Chem Toxicol ; 168: 113334, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952822

ABSTRACT

It was hypothesized that -iron( oxide nanoparticles (É£-Fe2O3 NPs) functionalized with Anoxybacillus flavithermus (A. flavithermus) as an effective magnetic sorbent for the preconcentrations of toxic metal ions. It is clear to conclude that the main novelty of this study is that É£-Fe2O3 NPs loaded with A. flavithermus is selective-specific for Cu(II), Mn(II). Structural functional groups of the samples were elucidated by FTIR, and SEM. Significant experimental parameters were investigated in detail. 0.2 mL min-1 of flow rate, 5 mL of 1 M of hydrochloric acid as eluent, 150 mg biogenic mass sample, and 150 mg É£-Fe2O3 NPs for supporting material were found as the best conditions. This developed method has been tested and verified using certified and standard reference materials. As a result of the studies, the pre-concentration factor of the Cu(II), Mn(II) metals was calculated as 40. All measurements showed that the developed solid-phase extraction (SPE) columns are available for 32 cycles. The use of É£-Fe2O3 NPs equipped with A. flavithermus as an effective magnetic sorbent for the first measurements of ions was thoroughly studied. In order of the biosorption capacities were calculated as 26.0, and 30.3 mg/g for Cu(II), Mn(II), respectively. The developed method for specifying the samples showed excellent to excellent results.


Subject(s)
Magnetite Nanoparticles , Adsorption , Anoxybacillus , Hydrochloric Acid , Ions , Iron , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Oxides
5.
Environ Res ; 209: 112766, 2022 06.
Article in English | MEDLINE | ID: mdl-35085567

ABSTRACT

For the simultaneous preconcentrations of Cu(II) and Mn(II), a novel preconcentration technique was developed and described. Bacillus cereus loaded magnetic É£-Fe2O3 nanoparticles were prepared and used as support materials on solid-phase extraction procedure. Important experimental parameters were investigated in details and pH 6.0, 3 mL min-1 of flow rate, 5 mL of 1 mol L-1 of HCl as eluent, 200 mg of biomass, and 200 mg of magnetic É£-Fe2O3 nanoparticles as support material was found as the best conditions. The preconcentrations factor were found to be 80 for Cu (II) and Mn(II). It was confirmed by the results that SPE columns could be used in 32 cycles. The LOD values calculated for Cu (II) and Mn (II) were 0.09 and 0.08 ng mL-1, respectively. The RSD values found were less than 3.4%. The extraction recoveries were achieved as higher than 98%. The biosorption capacities of Cu (II), and Mn (II) were 26.0 mg g-1, 30.3 mg g-1 respectively. The approach devised for analyzing analyte concentrations in food samples proved to be successful.


Subject(s)
Bacillus cereus , Nanoparticles , Adsorption , Magnetic Phenomena , Solid Phase Extraction/methods
6.
Biol Trace Elem Res ; 200(4): 1972-1980, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34729695

ABSTRACT

In this work, the separations and preconcentrations of Zn(II) and Hg(II) ions on Bacillus lichenifoemis loaded onto Amberlite XAD-4 resin by solid-phase extraction has been performed. The biosorbent was characterized by using FT-IR, SEM, and EDX. pH, sample flow rate, eluent type and concentration, amount of B. licheniformis and XAD-4 resin, sample volume, and possible interfering ions effect were investigated in details as experimental variables in the SPE procedure. Limit of detection values for Zn(II) and Hg(II) were detected as 0.03 and 0.06 ng mL-1, respectively. 0.2-15 ng mL-1 linear range values were achieved for Zn(II) and Hg(II), respectively. Relative standard deviation values were found to be lower than 5%. For validation of the procedure, the certified standard reference materials (CWW-TM-D, EU-L-2, NCS ZC73O14, NCS ZC73350) were analyzed. The concentrations of Zn(II) and Hg(II) in water and food samples were measured by ICP-OES. Consequently, it can be inferred that the immobilized B. licheniformis microcolumn has ideal selectivity for Zn(II) and Hg(II) biosorption.


Subject(s)
Mercury , Polystyrenes , Polyvinyls , Resins, Synthetic , Solid Phase Extraction/methods , Spectroscopy, Fourier Transform Infrared , Zinc
7.
Environ Res ; 207: 112231, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34695434

ABSTRACT

An ecofriendly preconcentration method was developed based on the use of Geobacillus galactosidasius sp. nov immobilized on Amberlite XAD-4 as an adsorbent for the preconcentrations of Hg and Sn. SEM-EDX performed for the investigation of surface functionality and morphology. The detailed investigations of factors such as pH of the solution, flow rate, interfering ions and sample volume have been thanks to the optimization of the pre-concentration system. The optimum pHs were found as 5.0-7.0 for Hg and Sn and also the optimum flow rates were determined as 2 mL min-1 for recovery of Hg and Sn. Under the best experimental conditions, limits of detections (LOD) were found as 0.53 ng mL-1 for Hg and 0.27 ng mL-1 for Sn. RSDs were calculated as 8.2% for Hg and 6.9% for Sn. The process was validated to use certified references (fish samples). ICP-OES was used to measure the levels of Hg and Sn in various real meal patterns after the devised technique was used. Concentrations of Hg and Sn were quantitively measured on gluten-free biscuit, flour, rice, Tuna fish, meat, chicken meat, potato, chocolate, coffee, tap water, energy drink and mineral water samples with low RSD. The developed method emerges as an innovative technology that will eliminate the low cost and toxic effect.


Subject(s)
Mercury , Solid Phase Extraction , Ions , Solid Phase Extraction/methods
8.
Anal Bioanal Chem ; 413(4): 1107-1116, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33388846

ABSTRACT

This paper proposes the use of Anoxybacillus flavithermus SO-15 immobilized on iron oxide nanoparticles (NPs) as a novel magnetized biosorbent for the preconcentrations of uranium (U) and thorium (Th). The SPE procedure was based on biosorption of U(VI) and Th(IV) on a column of iron oxide NPs loaded with dead and dried thermophilic bacterial biomass prior to U(VI) and Th(IV) measurements by ICP-OES. The biosorbent characteristicswere explored using FT-IR, SEM, and EDX. Significant operational factors such as solution pH, volume and flow rate of the sample solution, amounts of dead bacteria and iron oxide nanoparticles, matrix interference effect, eluent type, and repeating use of the biosorbent on process yield were studied. The biosorption capacities were found as 62.7 and 56.4 mg g-1 for U(VI) and Th(IV), respectively. The novel extraction process has been successfullyapplied to the tap, river, and lake water samples for preconcentrations of U(VI) and Th(IV).


Subject(s)
Anoxybacillus/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Solid Phase Extraction/methods , Thorium/isolation & purification , Uranium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Cells, Immobilized/chemistry
9.
Anal Biochem ; 617: 114122, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33515499

ABSTRACT

In this study, we present an environmental friend and easy procedure for simultaneous preconcentration of Cr(III), Hg(II) and Zn(II) by solid-phase extraction before their determination by inductively coupled plasma optical emission spectrometry. Armillae mellea immobilized nanodiamond was used as sorbent. During the study, critical parameters influencing the extraction performance were investigated in detail. The best parameters were found as pH 5.0, 2.0 mL min-1 of flow rate, 200 mg of Armillae mellea, 300 mL of sample volume. LOD values were found as 0.025, 0.13 and 0.038 ng mL-1, respectively for Cr(III), Hg(II) and Zn(II). By applying the developed procedure, sensitivities of ICP-OES were improved for 60 fold for Cr(III), Hg(II) and Zn(II). Their concentrations in different food samples were measured after microwave digestion and solid-phase extraction.


Subject(s)
Chromium/chemistry , Mercury/chemistry , Nanodiamonds/chemistry , Zinc/chemistry , Solid Phase Extraction
10.
Food Chem ; 336: 127675, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32795781

ABSTRACT

The present study explores the biosorption potential of Pleurotus ostreatus immobilized magnetic iron oxide nanoparticles for solid-phase extractions of Ni(II) and Pb(II) ions from the water and food samples. It was characterized using FTIR, FE-SEM/EDX before and after analyte ions biosorption. Important operational parameters including the effect of initial pH, the flow rate of the sample solution and volume, amount of biomass and support material, interfering ions, best eluent, column reusability were studied. The biosorption capacities of fungus immobilized iron oxide nanoparticles were found as 28.6 and 32.1 mg g-1 for Ni(II) and Pb(II), respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were achieved as 0.019 and 0.062 ng mL-1 for Ni(II), 0.041 and 0.14 ng mL-1 for Pb(II), respectively. The proposed method was validated by applying to certified reference materials and successfully applied for the preconcentrations of Ni(II) and Pb(II) ions from water and food samples by ICP-OES.


Subject(s)
Lead/isolation & purification , Nanoparticles/chemistry , Nickel/isolation & purification , Pleurotus/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/isolation & purification , Adsorption , Cells, Immobilized , Ferric Compounds/chemistry , Food Analysis/instrumentation , Food Analysis/methods , Food Contamination/analysis , Hydrogen-Ion Concentration , Limit of Detection , Magnetic Phenomena , Nickel/chemistry , Reproducibility of Results , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/chemistry
11.
Article in English | MEDLINE | ID: mdl-32416322

ABSTRACT

In this study, it was hypothesis that A. mongoliensis could be used as bioindicator for Ni (II) and Co (II). Thus, Ni (II) and Co (II) resistance, removal, bioaccumulation, and the impacts of them on antioxidant enzyme systems of thermophilic Anoxybacillus mongoliensis were investigated in details. The bioaccumulation of Ni (II) and Co (II) on the cell membrane of thermophilic A. mongoliensis, variations on surface macrostructure and functionality by FT-IR and SEM, and determination of antioxidant enzyme activities were also tested. The highest bioaccumulation values of Co (II) and Ni (II) were detected as 102.0 mg metal/g of dry bacteria at 10 mg/L for the 12th h and 90.4 mg metal/g of dry bacteria for the 24th h, respectively, and the highest Ni (II) and Co (II) cell membrane bioaccumulation capacities of A. mongoliensis were determined as 268.5 and 274.9 mg metal/g wet membrane, respectively at the 24th h. In addition, increasing on SOD and CAT activities were observed on depend of concentration of Ni (II) and Co (II) with respect to control. The antioxidant enzyme activity results also indicated that A. mongoliensis might be used as a bioindicator for Ni (II) and Co (II) pollution in environmental water specimens.


Subject(s)
Anoxybacillus/growth & development , Antioxidants/metabolism , Catalase/metabolism , Copper/metabolism , Environmental Pollutants/metabolism , Nickel/metabolism , Superoxide Dismutase/metabolism , Anoxybacillus/drug effects , Anoxybacillus/enzymology , Anoxybacillus/metabolism , Bioaccumulation , Copper/isolation & purification , Copper/toxicity , Environmental Pollutants/isolation & purification , Environmental Pollutants/toxicity , Nickel/isolation & purification , Nickel/toxicity
12.
J Pharm Biomed Anal ; 186: 113315, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32361469

ABSTRACT

A magnetic solid-phase extraction (MSPE) method was developed for simultaneous preconcentrations of U(VI) and Th(IV) before their measurements by inductively coupled plasma optical emission spectrometry (ICP-OES). The main idea of this biotechnological application depends on the use of bacteria, thermophilic Bacillus cereus SO-14, as a solid-phase biosorbent. It was immobilized to γ-Fe2O3 magnetic nanoparticles and used for MSPE. Characterization of the biosorbent was performed using the scanning electron microscope (SEM), the energy dispersive X-ray (EDX) and Fourier transform infrared (FT-IR) spectroscopy. Also, the the best conditions of experimental parameters were examined, and the reliability of the method developed was verified by applying the certified reference materials. Limit of detections (LODs) of the U(VI) and Th(IV) was calculated as 0.008 and 0.013 ng mL-1 respectively. Relative standard deviations (RSDs) were found to be 1.6 and 2.4 %, respectively, for U(VI) and Th(IV). R2 was also calculated as 0.9991. Preconcentration factors were achieved as 100 for both elements. It should be highlighted that LODs were critically improved and the sensitivity of ICP-OES was enhanced.


Subject(s)
Environmental Monitoring/methods , Solid Phase Extraction/methods , Thorium/analysis , Uranium/analysis , Bacillus cereus/metabolism , Limit of Detection , Magnetic Phenomena , Magnetite Nanoparticles , Microscopy, Electron, Scanning , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared
13.
Sci Rep ; 10(1): 455, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949208

ABSTRACT

A new biosorbent, composed of Amberlite XAD-4 loaded with Anoxybacillus kestanboliensis, was developed and surface morphologies were investigated by SEM and FT-IR. It was used for solid phase column preconcentrations of Co(II) and Hg(II) before their measurements by ICP-OES. LODs were calculated as 0.04 and 0.06 ng mL-1 for Co(II) and Hg(II) respectively. The maximum biosorption capacities were determined as 24.3 and 27.8 mg g-1 for Co(II) and Hg(II) respectively. Preconcentration factors were achieved for Co(II) and Hg(II) as 80. The method validation was performed by analyzing certified reference materials. The new process was successfully utilized for the preconcentration of these metals in various food samples. It should be highlighted that the sensitivity of ICP-OES was critically improved by applying developed method. Hence, ICP-OES could be an effective alternative for ICP-MS and/or GF-AAS.

14.
Mikrochim Acta ; 186(6): 355, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31098920

ABSTRACT

The fungus Bovista plumbea immobilized on γ-Fe2O3 nanoparticles is shown to be a novel sorbent for magnetic solid-phase extractions of U(VI) and Th(IV). The biosorbent was characterized by FT-IR, SEM, and EDX. The effects of pH value, flow rate and volume of sample, amounts of biomass and support material, eluent type, foreign ions and repeated use of the sorbent on extraction efficiency were investigated. The sorption capacities are 41 and 44 mg g-1, respectively, for U(VI) and Th(IV). The results indicated that B. plumbea immobilized onto γ-Fe2O3 nanoparticles can be utilized as a novel material for the preconcentrations of U(VI) and Th(IV) in certified materials and in spiked tap, river and lake waters. Graphical abstract Schematic presentation of a method for preconcentrations of Th(IV) and U(VI) ions using γ-Fe2O3 nanoparticles loaded with the fungus Bovista plumbea.


Subject(s)
Basidiomycota/chemistry , Environmental Pollutants/analysis , Ferrosoferric Oxide/chemistry , Magnetite Nanoparticles/chemistry , Solid Phase Extraction , Thorium/analysis , Uranium/analysis , Spectrum Analysis
15.
Food Chem ; 276: 174-179, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30409581

ABSTRACT

Preconcentrations of Cu(II), Ni(II) and Pb(II) ions by using Coprinus silvaticus immobilized multiwalled carbon nanotube (MWCNT) were investigated. Effects of important parameters on preconcentration procedure were examined. The best pH values of for Cu(II), Ni(II) and Pb(II) were found to be 6.0, 6.0 and 4.0, respectively. Flow rate of sample solution was 2.0 mL min-1, while desorption was achieved at 1.0 mL min-1 flow rate. Preconcentration factors were achieved as 60 for Cu(II), Ni(II) and 70 for Pb(II) (by dividing initial sample volume to final volume). LODs were calculated as 0.014, 0.016 and 0.093 ng mL-1, respectively for Cu(II), Ni(II) and Pb(II). Accuracy of the method was checked by applying to certified reference samples. Inductively coupled plasma optical emission spectrometer (ICP OES) was employed for measurements of Cu(II), Ni(II) and Pb(II) in digested baby food samples.


Subject(s)
Copper/analysis , Coprinus/metabolism , Infant Food/analysis , Lead/analysis , Nanotubes, Carbon/chemistry , Nickel/analysis , Adsorption , Cells, Immobilized/chemistry , Cells, Immobilized/metabolism , Copper/isolation & purification , Coprinus/chemistry , Food Analysis , Humans , Hydrogen-Ion Concentration , Infant , Ions/chemistry , Lead/isolation & purification , Limit of Detection , Nickel/isolation & purification , Solid Phase Extraction , Spectrophotometry, Atomic
16.
Food Chem ; 271: 232-238, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30236672

ABSTRACT

A new bio-MSPE sorbent based on the use of C. micaceus and γ-Fe2O3 magnetic nanoparticle was prepared for the preconcentrations of Co(II) and Hg(II). Critical parameters including pH, flow rate, quantity of C. micaceus, quantity of γ-Fe2O3 magnetic nanoparticle, eluent (type, concentration and volume), sample volume, and foreign ions were examined. Surface structure and variations after interaction with Co(II) and Hg(II) of bio-MSPE sorbent were investigated by FT-IR, SEM, and EDX. The impact of bio-MSPE column reusage was also tested. The biosorption capacities were determined as 24.7 mg g-1 and 26.2 mg g-1, respectively for Co(II) and Hg(II). Certified reference materials were utilized to find out the accuracy of the prepared bio-MSPE method. This novel bio-MSPE method was accomplished by being applied to real food and water samples. In particular, it will be possible to make use of C. micaceus as new alternatives, in environmental biotechnology applications.


Subject(s)
Cobalt/chemistry , Coprinus/chemistry , Mercury/chemistry , Solid Phase Extraction/methods , Spectroscopy, Fourier Transform Infrared/methods , Adsorption , Ferric Compounds , Food Analysis , Hydrogen-Ion Concentration , Magnetic Phenomena , Water/chemistry , Water Pollutants, Chemical
17.
Food Chem ; 266: 126-132, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30381167

ABSTRACT

This study deals with the preconcentrations of Ni(II) and Co(II) ions in real samples using the solid phase extraction method (SPE) before their determinations by inductively coupled plasma optical emission spectrometry (ICP-OES). Thermophilic bacterium Geobacillus stearothermophilus SO-20 (Accession number: KJ095002), loaded with Amberlite XAD-4, was utilized as a novel biosorbent. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM) were employed for the investigation of the bacterial surface before and after Ni(II) and Co(II) biosorption. The experimental parameters were examined to find the best conditions. The retained Ni(II) and Co(II) ions on the biosorbent were eluted by using 5.0 ml of 1.0 mol l-1 HCI as the best eluent. The sorption capacities were found to be 16.8 mg g-1 for Ni(II) and 21.6 mg g-1 for Co(II). It was also successfully used for the quantification of Ni(II) and Co(II) in a river water sample, some vegetables and soil.


Subject(s)
Copper/chemistry , Geobacillus stearothermophilus/chemistry , Nickel/chemistry , Adsorption , Cells, Immobilized/chemistry , Copper/isolation & purification , Fresh Water/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Microscopy, Electron, Scanning , Nickel/isolation & purification , Polystyrenes/chemistry , Polyvinyls/chemistry , Solid Phase Extraction , Spectroscopy, Fourier Transform Infrared
18.
Food Chem ; 242: 533-537, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29037726

ABSTRACT

Hybrid nanostructures composed of γ-Fe2O3 (maghemite) and carboxylated-multi walled carbon nanotube (cMWCNT) were used for the magnetic solid phase extractions and determination of Sudan I, II, III, IV, Para Red, Sudan Black B and Sudan Red 7B in chili products. High performance liquid chromatography (HPLC) was employed for the measurements. Limit of quantification (LOQ) values were found in the range 0.44-2.82ngmL-1 for analytes. The best extraction parameters were determined as pH 8.0, 40mg of magnetic nanoparticle, 4.0min of contact time, 0.3mL desorption by acetonitrile. The samples were dissolved in acetone-dichloromethane-methanol (3:2:1, v/v/v) and diluted with acetonitrile-methanol (v/v; 80:20) before the method was applied. Concentrations of Sudan dyes and Para Red were determined in four samples of chili powder from less than LOQ to 31.21±1.6ngg-1, two samples of chili tomato sauces (lower than LOQ) and two samples of ketchup (lower than LOQ).


Subject(s)
Chromatography, High Pressure Liquid/methods , Coloring Agents/analysis , Coloring Agents/isolation & purification , Food Contamination/analysis , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Spices/analysis , Azo Compounds/analysis , Azo Compounds/isolation & purification , Ferric Compounds/chemistry , Nanotubes, Carbon/chemistry , Naphthalenes/analysis , Naphthalenes/isolation & purification , Naphthols/analysis , Naphthols/isolation & purification
19.
J Environ Radioact ; 171: 217-225, 2017 May.
Article in English | MEDLINE | ID: mdl-28285087

ABSTRACT

Bioaccumulation, resistance and preconcentration of uranium(VI) by thermotolerant Bacillus vallismortis were investigated in details. The minimum inhibition concentration of (MIC) value of U(VI) was found as 85 mg/L and 15 mg/L in liquid and solid medium, respectively. Furthermore, the effect of various U(VI) concentrations on the growth of bacteria and bioaccumulation on B. vallismortis was examined in the liquid culture media. The growth was not significantly affected in the presence of 1.0, 2.5 and 5.0 mg/L U(VI) up to 72 h. The highest bioaccumulation value at 1 mg/L U(VI) concentration was detected at the 72nd hour (10 mg/g metal/dry bacteria), while the maximum bioaccumulation value at 5 mg/L U(VI) concentration was determined at the 48th hour (50 mg metal/dry bacteria). In addition to these, various concentration of U(VI) on α-amylase production was studied. The α-amylase activities at 0, 1, 2.5 and 5 mg/L U(VI) were found as 3313.2, 3845.2, 3687.1 and 3060.8 U/mg, respectively at 48th. Besides, uranium (VI) ions were preconcentrated with immobilized B. vallismortis onto multiwalled carbon nanotube (MWCNT) and were determined by UV-vis spectrophotometry. The surface macro structure and functionalities of B. vallismortis immobilized onto multiwalled carbon nanotube with and without U(VI) were examined by FT-IR and SEM. The optimum pH and flow rate for the biosorption of U(VI) were 4.0-5.0 and 1.0 mL/min, respectively. The quantitative elution occurred with 5.0 mL of 1 mol/L HCl. The loading capacity of immobilized B. vallismortis was determined as 23.6 mg/g. The certified reference sample was employed for the validation of developed solid phase extraction method. The new validated method was applied to the determination of U(VI) in water samples from Van Lake-Turkey.


Subject(s)
Bacillus/metabolism , Radiation Monitoring/methods , Uranium/metabolism , Nanotubes, Carbon/microbiology , Solid Phase Extraction , Water Pollutants, Radioactive/analysis
20.
Food Chem ; 215: 447-53, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27542497

ABSTRACT

A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations.


Subject(s)
Bacillus/chemistry , Ions/chemistry , Nanodiamonds/chemistry , Solid Phase Extraction/methods , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...